Mixed Re-Sampled Class-Imbalanced Semi-Supervised Learning for Skin Lesion Classification
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Learning for Imbalanced Sentiment Classification
Various semi-supervised learning methods have been proposed recently to solve the long-standing shortage problem of manually labeled data in sentiment classification. However, most existing studies assume the balance between negative and positive samples in both the labeled and unlabeled data, which may not be true in reality. In this paper, we investigate a more common case of semi-supervised ...
متن کاملWebly Supervised Learning for Skin Lesion Classification
Within medical imaging, manual curation of sufficient welllabeled samples is cost, time and scale-prohibitive. To improve the representativeness of the training dataset, for the first time, we present an approach to utilize large amounts of freely available web data through web-crawling. To handle noise and weak nature of web annotations, we propose a two-step transfer learning based training p...
متن کاملAutomatic Skin Lesion Segmentation using Semi-supervised Learning Technique
Skin cancer is the most common of all cancers and each year million cases of skin cancer are treated. Treating and curing skin cancer is easy, if it is diagnosed and treated at an early stage. In this work we propose an automatic technique for skin lesion segmentation in dermoscopic images which helps in classifying the skin cancer types. The proposed method comprises of two major phases (1) pr...
متن کاملSemi-Supervised Boosting for Multi-Class Classification
Most semi-supervised learning algorithms have been designed for binary classification, and are extended to multi-class classification by approaches such as one-against-the-rest. The main shortcoming of these approaches is that they are unable to exploit the fact that each example is only assigned to one class. Additional problems with extending semisupervised binary classifiers to multi-class p...
متن کاملSemi-Supervised Learning for Blog Classification
Blog classification (e.g., identifying bloggers’ gender or age) is one of the most interesting current problems in blog analysis. Although this problem is usually solved by applying supervised learning techniques, the large labeled dataset required for training is not always available. In contrast, unlabeled blogs can easily be collected from the web. Therefore, a semi-supervised learning metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Automation & Soft Computing
سال: 2021
ISSN: 1079-8587
DOI: 10.32604/iasc.2021.016314